Extending the SkelCL Skeleton Library for Stencil Computations on Multi-GPU Systems

نویسندگان

  • Stefan Breuer
  • Michel Steuwer
  • Sergei Gorlatch
چکیده

The implementation of stencil computations on modern, massively parallel systems with GPUs and other accelerators currently relies on manually-tuned coding using low-level approaches like OpenCL and CUDA, which makes it a complex, time-consuming, and error-prone task. We describe how stencil computations can be programmed in our SkelCL approach that combines high level of programming abstraction with competitive performance on multi-GPU systems. SkelCL extends the OpenCL standard by three high-level features: 1) pre-implemented parallel patterns (a.k.a. skeletons); 2) container data types for vectors and matrices; 3) automatic data (re)distribution mechanism. We introduce two new SkelCL skeletons which specifically target stencil computations – MapOverlap and Stencil – and we describe their use for particular application examples, discuss their efficient parallel implementation, and report experimental results on manycore systems with multiple GPUs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Level Programming of Stencil Computations on Multi-GPU Systems Using the SkelCL Library

The implementation of stencil computations on modern, massively parallel systems with GPUs and other accelerators currently relies on manually-tuned coding using low-level approaches like OpenCL and CUDA. This makes development of stencil applications a complex, time-consuming, and error-prone task. We describe how stencil computations can be programmed in our SkelCL approach that combines high...

متن کامل

Using the SkelCL Library for High-Level GPU Programming of 2D Applications

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-36949-0_41. Abstract. Application programming for GPUs (Graphics Processing Units) is complex and error-prone, because the popular approaches — CUDA and OpenCL — are intrinsically low-level and offer no special support for systems consisting of multiple GPUs. The SkelCL library offers pre-implemented recurrin...

متن کامل

High-Level Programming for Medical Imaging on Multi-GPU Systems Using the SkelCL Library

Application development for modern high-performance systems with Graphics Processing Units (GPUs) relies on low-level programming approaches like CUDA and OpenCL, which leads to complex, lengthy and error-prone programs. In this paper, we present SkelCL – a high-level programming model for systems with multiple GPUs and its implementation as a library on top of OpenCL. SkelCL provides three mai...

متن کامل

SkelCL: Enhancing OpenCL for High-Level Programming of Multi-GPU Systems

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-39958-9_24. Abstract. Application development for modern high-performance systems with Graphics Processing Units (GPUs) currently relies on low-level programming approaches like CUDA and OpenCL, which leads to complex, lengthy and error-prone programs. In this paper, we present SkelCL – a high-level programmi...

متن کامل

Cluster-SkePU: A Multi-Backend Skeleton Programming Library for GPU Clusters

SkePU is a C++ template library with a simple and unified interface for expressing data parallel computations in terms of generic components, called skeletons, on multi-GPU systems using CUDA and OpenCL. The smart containers in SkePU, such as Matrix and Vector, perform data management with a lazy memory copying mechanism that reduces redundant data communication. SkePU provides programmability,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013